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Abstract: New approach to describe the internal dynamics of weakly bound 
clusters is presented. It is based on the method of main components of nonlinear 
dynamical systems which was adapted to study collective modes behavior in 
molecular systems. The method was applied to extract the collective modes in 
small water clusters. It is found that the number of active collective modes 
depends on the initial cluster excitation and that the internal energy is partitioned 
nonuniformly among the modes. Calculated collective modes were used to 
estimate the internal temperature of small water clusters and energy intervals for 
their quasi-phases. 

1. Introduction 

Study of weakly bound clusters plays an important role in various areas of science, in particular, 

in physical chemistry, molecular biology, in the theory of phase transitions in finite-size systems, in 

the theory of nonlinear dynamic systems. Investigation of movement of particles in the clusters 

conducts to understanding the mechanisms of isomerization and fragmentation and to revealing their 

dynamic features. The study is faced with some principal difficulties: all types of particle motion are 

mixed. As a result the dynamics is sophisticated and can not be described by well known method of 

normal modes because of interaction of different types of vibrations in weakly bound clusters. This 

interaction influences on energy redistribution between internal degrees of freedom and, 

consequently, on the rate constant of isomerization and monomolecular fragmentation. 

Describing the internal dynamics in the weakly bound clusters it is more reasonable to talk not 

about the degrees of freedom but about collective motions of the particle in the clusters. The high-

dimensional nature of the dynamics is often a substantial obstacle to clarifying the exact mechanisms 
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of collective motions and new approaches to identify a small number of collective variables that play 

a predominant role in the structural dynamics of clusters are very important. The authors of given 

paper suggest to use the main components method, which has been adapted to describe the internal 

dynamics of weakly bound atomic clusters [1] to study the collective motions in small water clusters. 

2. Method of effective modes in molecular dynamics 

Let us describe the internal motion of dynamical system in momentum subspace 
p
NE with 

dimension . Multidimensional vector of momentum of system with  particles and masses 
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Specially ordered orthonormal basis vector set 1,{ } p
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 determines the main directions in 

the phase space with the maximum kinetic energies components. 

Effective collective mode (i.e. main component of movement) is the projection of kinetic 

momentum  at every direction . Such basis can be constructed and ordered as a 

result of solution of eigen values task: 
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where  - singular vectors conjugated to . Values kg ke
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nonascending order. 

The first effective mode has the maximum value of the total kinetic energy of dynamical system. 

First ( ) time-averaged effective modes have more kinetic energy than others modes 

that are calculated with any another orthonormal basis set. 
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gives the contribution of the k-th mode to common dynamics in new coordinate system. 



Contribution of k-th mode in simultaneous kinetic energy of the system can be estimated by 

formula: 
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Time-averaged kinetic energy kE  in k-th mode can be calculated as: 
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where E  – mean kinetic energy of system during the time of observation .  0t

As a result K-dimensional ( ) approximation of  with the mean kinetic energy NK ≤ ˆ ( )tp Ê  can 

be calculated as: 
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Time-averaged square error of such approximation can be predicted by formula: 
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The values kη  give the kinetic energy distribution among collective degrees of freedom called 

collective modes. The effective dimension  effK ( )effK N≤ of the momentum subspace  in which 

the most significant movement of dynamical system is concentrated is calculated as: 
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The effective dimension reflects the number of internal degrees of freedom filled by kinetic energy 

and can be used to calculate the internal temperature of the cluster. The temperature is the parameter 

which is borrowed from statistical physics for describing an internal state of the cluster. Standard 

estimation of cluster temperature calculated as: 
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where Bk  is Boltzmann constant and dfK  is the number of internal degrees of freedom. For non-

rotating cluster placed in mass center 3dfK n Q 6= − − , where Q  – number of rigid bonds in the 

cluster. Definition (2) works well for the clusters consisting of identical atoms and is not correct for 



complex multicomponent atomic and molecular systems which are clusters of water. For the last an 

assumption of equipartition of energy among internal degrees of freedom is not valid. Using effective 

phase dimension Keff  instead Kdf in (2) gives the temperature  that can estimate temperature of 

micro canonical ensemble of molecular systems more accurately.  

effT

2. Analyses of small water clusters dynamics 

For application of the effective modes method the internal dynamics of small water clusters has 

been considered. Water clusters are important weakly bound complexes due to the crucial role which 

they play in natural processes. They belong to a class of nonrigid systems with very complicated 

internal dynamics. Study of the dynamics can clarify on microscopic scale a wide range of chemical 

problems from hydrogen bond rearrangement rules to thermodynamic properties of water. Water 

pentamer and tetramer (nmol = 4, 5) were chosen for the study. Coordinates and momenta of the atoms 

in the cluster were calculated by classical molecular dynamics. Classical Hamiltonian of cluster can 

be defined as follows: 
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where  - potential energy of interaction between particles. Generation of different 

initial states of non-rotated bound cluster with initial energy 

1( ( ),..., ( ))nU t tr r

0 0H U E= +  was performed by Monte-

Carlo method, where - is potential energy of global minima of cluster’, - is initial kinetic 

energy.  The value and initial coordinates of atoms  can be found once by well known 

thermal annealing method for example. Setting up the initial excitation value  it can possible to 

generate randomly initial atoms momenta  that must satisfy system of equations: 
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where is the vector product. For the study rigid TIP5P [2] potential was used to describe 

interaction between molecules in the cluster. The initial geometries of clusters obtained in this paper 

are placed in Fig.1.  
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Fig.1 Water tetramer (left) and pentamer (right) initial geometry (global miminum of potential TIP5P 

energies: U0=-1.233 eV for tetramer and U0=-1.653 eV for pentamer). 

 

For Hamilton equations numerical integration the next parameters of trajectories were chosen: the 

integration step h was equal to 1 fs, observed time interval 0 2 5t = −  ns. The Verlet algorithm 

provided with the accuracy of the integration in the third sing in the value of the total energy. The 

values of all parameters presented in this work were obtained by averaging on 10 trajectories for each 

initial excitation energy of the cluster. 0E

Quasi-states of cluster of two types (A, B) of atoms usually can be determined using Lindemann 

parameter that calculated as: 
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Where  - number of pairs of atoms of types A and B,  - distance between them. Solid-

liquide states boundary of cluster usually determined by criteria (

ABN ijr

1.0>δ ) and placed in Fig. 2 for 

both clusters.  

 
Fig.2 Lindemann’ indexes for water tetramer (left) and for water pentamer (right) in dependence of 
excitation energy . 0E



Lindemann’ parameter usually works well in systems like rare-gases clusters when isotropic types of 

interactions between all particles are present only. In particles with weak anisotropic bonds like water 

clusters that parameter doesn’t fully describe liquid-solid phase transition of cluster. Analysis of 

parameter (3) in application for water clusters (parameters )(),(),( HHOHOO δδδ  for different types 

of atoms) can bring typically four energy regions of cluster’ states:  

• Solid-like state of cluster ( 1.0<δ ); E0<0.15 eV for tetramer and E0<0.2 eV for pentamer. 

Only small vibrations of all atoms are presented. 

• ‘Pre-melting’ state of cluster ( 1.0>δ ); 0.15<E0<0.5 eV for tetramer and 0.2<E0<0.5 eV 

for pentamer; There is only hydrogen atoms’ activity are observed but oxygen atoms (water 

molecules as whole) construct stationary (with lifetime 1τ > ps) spatial structures 

(structural isomers).  

• Liquid-like state (characterized by strong growth of δ ); 0.5<E0<0.6 eV for tetramer and 

0.5<E0<0.65 eV for pentamer; There is no stationary spatial structures and active 

isomerization of cluster are performed; fast breaks and creation of hydrogen bonds 

(τ ≤ 1ps) are viewed. 

• Monomolecular fragmentation (characterized by stabilization of δ ); E0>0.6 eV for 

tetramer and E0>0.65 eV for pentamer. 

 
Fig.3. Effective dimensions of momentum subspace of phase spaces of  water tetramer and pentamer) 
in dependence of excitation energy . 0E



Lindemann’ parameter estimates particles activity in a general way and doesn’t divide types of 

motions. Effective dimension of momentum phase space Keff of water clusters is placed in Fig.3. 

Dependence Keff from E0 also can help understand dynamics activity in every quasi-phase. On the 

example of pentamer Keff  has values 13-14 in solid-like phase, stable (~15) in pre-melting state and 

going up to 17-18 in fragmentation region. It is interesting that in region E0=0.3-0.4 eV value Keff 

starts to growth due to Lindemann’ index in that region have a plateau. Such behavior can be 

explained by faster cluster structure isomerization and motion of cluster became non-planar. For 

tetramer that region gives E0=0.25-0.35eV. At energies lower that threshold there is only hydrogen 

atoms’ activity are observed but water molecules as whole construct stationary planar structural 

isomers with seldom transitions ( 1τ ps). Collective motion of oxygen atoms performs mostly in 

plane. At higher energies nonplanar structures of cluster can be created sometimes so the effective 

dimension Keff of phase space starts to growth again. 

Other application of parameter Keff is correction of micro canonical temperature of cluster. As it is 

seen in Fig.4 temperature Teff  calculated by formula (2) using Keff as parameter has values above 

~100K higher than standard one T in all ranges of energies. Someone can conclude from Fig.4 that 

mean kinetic energy by effective directions in the phase space (like number of freedom) has not 

equipartition distribution for small water clusters. 

 

Fig.4. Temperatures of water tetramer and pentamer in dependence of excitation energy  using 
standard approach (2)  with number of freedom Kdf  (T-curves) and effective dimension of 
momentum phase space Keff (Teff-curves) as parameter. 
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4. Conclusions 

Method of main components for collective motion analysis of weakly bonded molecular systems 

is presented in paper. Collective modes for water tetramer and pentamer have shown that mean 

kinetic energy has not equipartition distribution by different types of motion. Method of main 

components can help to determine number of active modes at any energy of cluster. Growing up 

excitation energy gradual modes activation is performed and redistribution of kinetic energy by 

modes is viewed. Using effective dimension of the momentum phase space together with Lindemann’ 

parameter brings more rich information about phase quasi-states of cluster and detects isomerization 

and fragmentation thresholds. Method of main components can be easily adapted to other molecular 

systems. 
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