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QUADRUPOLE COUPLING CONSTANTS CQQ

Introduction

D etailed analyses of the spatial characteristics
of the most efficient known zeolite precursors

surely can help the synthesis of perspective new
catalyst materials. More particularly in the special
case of H-form aluminosilicates, applied in impor-
tant industrial methanol to gasoline (MTG) and
catalytic cracking processes [1], the structure of the
active bridged Si–O(H)–Al moiety can be studied
by combining nuclear magnetic resonance (NMR)
and theoretical methods [2]. The direct relation be-
tween the quadrupole coupling constant (CQQ) of
the atoms constituting the framework and the elec-
trostatic field gradient, indeed, makes the CQQ con-
stant a valuable source of data on the field gradient,
which is directly related to the respective atomic en-
vironment. The interest for such theoretical studies
is, moreover, increased owing to the problematic de-
termination of the electrostatic field gradient (EFG)
values from X-ray data [3] as compared, for exam-
ple, to the electrostatic potential (EP) evaluation [4].
The experimental EFG data at the framework atoms
are preferable for the assertion of the derivatives of
the EP as compared to any other source of experi-
mental data, i.e., the infrared (IR) estimation of the
electrostatic field at the positions of small adsorbed
probes. The field should be assigned to the posi-
tions of the probes that require the determination
of the adsorbate–adsorbent potential and adsorbate
location [5, 6], while the positions of the framework
nuclei are usually well known. As a result, consid-
ering periodic Hartree–Fock (PHF) methods for the
calculation of the electrostatic field presents some
advantages as compared to IR estimations.

Various ways to evaluate the EP have been pro-
posed since the 1970s. One of them, proposed by
Stewart [4], is based on the calculation of multi-
pole moments (MM) of high orders on the basis
of X-ray data. Within this method, the fitting para-
meters are the atomic MM values. Recently, Larin
et al. [7] showed that correlations between the MMs,
including the neighbor atoms, and without address-
ing the experimental electron density from X-ray
data, is also very useful for the calculation of the
MM of high orders. The particular interest for such
MM relations is that they are particularly suitable to
tackle frameworks that cannot be treated with PHF
schemes owing to a large number of atoms per unit
cell (UC). These relations could also be considered
for systems possessing some unordered cations or
hydrogen atoms. In these frameworks, fitting the

positions and MMs for the constituting atoms from
X-ray experiment is indeed a problem often encoun-
tered.

The method to calculate MMs for “large” zeo-
lites is indirectly based on the proposition that the
TO4 units in “small” or “large” frameworks are
embedded in essentially the same media and their
characteristics could, hence, be discussed within a
common approach of MM analysis, i.e., MM de-
pendences on both the geometry and low-order
MMs can be described by common functions [7].
However, a comparison between all measured char-
acteristics of the possible different frameworks is
desirable to confirm the identity or closeness of the
electrostatic field values. Also, the basis sets applied
to obtain the MM dependences should be tested to
provide a sufficiently precise correlation with avail-
able relevant experimental data.

In this study, we first will shortly present the
adopted computational strategy. The main geomet-
rical features of the optimized models are discussed
below. The discussion is devoted to the results of
the calculations of the nuclear quadrupole cou-
pling constants (CQQ) and the EFG anisotropy of
the quadrupolar nuclei, 2H, 27Al, and 17O, respec-
tively, for five H-form zeolites (ABW, CAN, CHA,
EDI, and NAT) as well as to the comparison with
experimental data available for zeolites possessing
“large” unit cells (ZSM-5 and Y zeolite).

Computational Strategy

The theoretical bases for the solution of the
Schrödinger electronic problem in three dimensions
considering periodic boundary conditions have al-
ready largely been described in the literature [8, 9].
In this work, we optimized the fractional coordi-
nates of the different Brönsted centers, i.e., the Si–
O(H)–Al moieties, for a series of five cationic forms
of aluminosilicate, with a relatively small number
of atoms per unit cell, i.e., ABW [10], CAN [11],
CHA [12], EDI [13], and NAT [14] (Table I), using a
full periodic Hartree–Fock CO-LCAO-SCF scheme.
Respective low symmetry groups were held for the
optimization because they allow to consider non-
equivalent Al and Si positions. Starting from initial
cationic forms, one could avoid appreciable varia-
tions of the cell volume when replacing a cation by a
bridged hydrogen atom. The cell parameters could,
hence, be kept fixed. For all five frameworks, we al-
lowed the variation of the coordinates of the four
(O, H, Si, Al) framework atoms involved in each
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TABLE I
Symbol, number of atoms, of different Al, Si, and O types (nH = nAl), of atomic orbitals (AO) per unit cell (UC),
and symmetry group of the H-form aluminosilicates.a

AO/UC Symmetry
Name Symbol Atoms (UC) nAl/nSi/nO (6-21G∗∗) group

ABW HABW 28 1/1/4 388 Pna21
Cancrinite HCAN 42 1/1/4 582 P63
Chabazite HCHA 39 1/3/8 517a R3
Edingtonite HEDI 34 1/2/5 480 P21212
Natrolite HNAT 34 1/2/5 480 Fdd2

a With the ps-21G∗∗ basis set.

type of bridged Brönsted center (12 variables) [15].
In the case of HEDI, the optimization of the same
fractional coordinates allowing the additional vari-
ation of the cell parameters was also considered for
comparison. [Note: In this article, we will show that
their influence on the final geometry is of lower
significance.] The optimizations were carried out,
with CRYSTAL95 [16] in which we implemented
the Polak–Ribiere algorithm [17], with energy con-
vergences of 10−3 kcal/mol. The minimal STO-3G
basis set was chosen to handle a reasonable num-
ber of atomic orbitals (AO) per UC, hence leading
to moderate computing times. Using the optimized
geometry, single-point calculations were then con-
sidered with the ps-21G∗(Al, Si)/6-21G∗(O, H) and
6-21G∗(Al, Si)/6-21G∗(O, H) basis sets (named here-
after as ps-21G∗∗ and 6-21G∗∗, respectively) to ob-
tain the atomic nuclear quadrupole coupling con-
stants (CQQ) of 2H, 27Al, and 17O, as well as the EFG
tensor elements at their respective locations, as im-
plemented in the CRYSTAL code.

With the ps-21G∗∗ basis, the SCF part converged
properly for each of the four different TO4 moieties
in all the five H-forms, i.e., 20 cases in total. The
exponents used for the 3sp′ orbitals of Si and Al
were 0.12339 and 0.17 a.u.−2, respectively, and that
for the 2sp′ orbital of O was 0.3737 a.u.−2. The expo-
nents for the d polarization functions of Al, Si, and O
were optimized as 0.45, 0.5, and 0.6 a.u.−2, respec-
tively. The sp/d exponents used for the 6-21G∗∗ basis
are 0.9, 0.15/0.35, 0.15/0.4, and 0.42/0.72 a.u.−2 for
the H, Al, Si, and O atoms, respectively. With the
6-21G∗∗ basis, the SCF convergence was achieved in
9 among all 20 optimized Si–O(H)–Al moieties.

All computations with the CRYSTAL95 code
were carried out on an IBM 15-node (120 MHz)

Scalable POWERparallel platform (with 1 Gb of
memory/CPU). In all cases, the thresholds for the
calculations were fixed to 10−5 for the overlap
coulomb, the penetration coulomb, and overlap ex-
change, to 10−6 and 10−11 for the pseudo-overlap
exchange, and to 10−5 for the pseudopotential series
for all levels of basis sets. A typical total geome-
try optimization of one bridged Brönsted center (12
variables) with the STO-3G basis set took 2–3 days
on the above-cited CPU. Single-point computations
with the split-valence bases were executed directly
without keeping the bielectronic integrals. The re-
spective shortest SCF convergence (7–8 cycles) took
around 1.5–2 h in the case of the Brönsted centers of
the HABW zeolite.

The nuclear CQQ characterizes the quadrupole
interactions of an asymmetric nucleus. The CQQ val-
ues (in MHz) for all atoms within the five H-forms
were obtained using the EFG values at their respec-
tive positions [16]:

CQQ = 2.3496× 102Q∇Ezz, (1)

where the coefficient on the right hand-side cor-
responds to ∇Ezz expressed in e × a.u.−3, and the
nuclear quadrupole moments Q are 0.1402 [18],
−0.026 [19], and 0.00286 [20, 21] barn (1 barn =
10−28 m2) for 27Al, 17O, and 2H, respectively. An-
other parameter that influences the spectra of a
nucleus having a quadrupolar nuclear moment is
the EFG anisotropy:

η = (∇Exx −∇Eyy)/∇Ezz, (2)

wherein all EFG elements are related to the EFG ten-
sor principal axes.
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Results

GEOMETRY OPTIMIZATIONS

The variations of the structural characteristics
of the bridged moieties while optimizing the frac-
tional coordinates of each crystallographically dif-
ferent atomic type of Brönsted center were already
discussed earlier [15]. The variety of the models
considered covers a wide range of Al–O and Si–O
distances, Si–O–Al angles, and H deflection angles
from the Si–O–Al plane. Here, for conciseness, we

only discuss the more recent geometries obtained
considering the additional variation of the cell pa-
rameters for the HEDI case by comparison with
the previous optimization based on the fractional
coordinates of the bridged atoms only (Table II).
The first observation is that even if the relative
energies obtained, varying both the fractional co-
ordinates and cell parameters, qualitatively repeat
the ratio obtained earlier, varying the fractional co-
ordinates only [15], the spatial characteristics of the
Si–O(H)–Al moieties between the O(1) and O(4)
types become closer. Second, the simultaneous in-
crease of both the Si–O–Al angle and the H de-

TABLE II
Geometry of the Brönsted sites (distances in Å, angles in degrees), for HEDI optimized with the STO-3G basis
set varying either the fractional coordinates (FC) of the H, O, Si, and Al atoms only (upper part) or the FC
together with the cell parameters (lower part, with cell parameters a, b, c, in Å, and change of volume1V of unit
cell, in %).a

Fractional coordinates (FC)

Parameters O(3) O(4) O(2) O(1)

Si–O–Al initial 134.76 138.27 132.47 143.38
Si–O–Al opt. 135.41 129.10 142.00 139.26
O–H 0.970 0.983 0.971 0.983
Si–O 1.775 1.827 1.746 1.676
Al–O 1.845 1.906 1.829 1.913
Al–H 2.396 2.493 2.353 2.463
βb 3.7 0.3 1.2 0.4
Si–O–H 111.6 115.3 107.5 108.2
Al–O–H 112.9 115.6 110.5 112.5
1USTO-3G/1Ups-21G∗ 0.0/0.0 15.4/14.1 16.1/34.2 62.4/59.3

FC+ cell parameters

Parameters O(3) O(4) O(2) O(1)

Si–O–Al initial 135.41 129.10 142.00 139.26
Si–O–Al opt. 137.76 137.51 142.84 141.27
O–H 0.976 0.975 0.974 0.978
Si–O 1.740 1.748 1.715 1.680
Al–O 1.830 1.827 1.796 1.865
Al–H 2.377 2.343 2.287 2.377
βb 6.8 6.0 14.9 6.4
Si–O–H 109.7 112.6 108.3 109.0
Al–O–H 112.2 109.7 107.6 109.5
ac 9.490 9.448 9.320 9.429
b 9.455 9.555 9.585 9.662
c 6.363 6.430 6.503 6.376
−1V 7.92 3.59 3.51 3.52
1USTO-3G 0.0 9.4 27.5 68.9

a Relative energies (in kcal/mol) are also given for the ps-21G∗(Al, Si)/6-21G∗(O, H) basis set.
b Angle (in degrees) of the H deflection form the Si–O–Al plane.
c Initial values of a, b, and c are 9.55, 9.665, and 6.523 Å, respectively [13].

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 185



LARIN AND VERCAUTEREN

flection angle from the Si–O–Al plane for all cen-
ters together with the cell parameters decrease was
not predictable. One could indeed expect a smaller
Si–O–Al angle while decreasing the cell parameters.
The Al–H distance, considered as one of the most
reliable geometric parameters of the Si–O(H)–Al
moiety from the experimental point of view, also
shortens as compared to the lower experimental
estimate 2.37 ± 0.04 [22] observed for the bridged
groups in the 6-membered rings of zeolite HY or to
even a smaller value for O(2) in HEDI.

The decrease of the cell volume does not exceed
8% while adding H to the Si–O(3)–Al moiety as
compared to the initial cationic EDI form, and it is
smaller than 4% for the other Si–O(H)–Al groups
(Table II). This is appreciably smaller and opposite
to the increase by 14% noted by Ugliengo et al. [23]
while optimizing the replacement of Si by (Al+ H)
starting from an initial all-siliceous EDI structure
using the GULP code [24] based on B3LYP parame-
terization.

Total optimizations, i.e., coordinates of all atoms
and cell parameters, for the other HABW, HNAT,
and HCAN frameworks were not completed, but
we can confirm that the decrease of their cell vol-
ume starting from their cationic form is even smaller
than for the HEDI case. Cationic models are thus
more appropriate initial structures as compared to
their all-siliceous analogs for the optimization of the
H-forms because they require a smaller variation of
the cell parameters. This tendency should, however,
be evidently tested with a higher quality basis set
level.

QUADRUPOLE COUPLING CONSTANTS OF
THE DEUTERIUM ATOMS

For 2H, while the EFG anisotropies at the posi-
tions of the different crystallographically indepen-
dent types of H are in agreement with the measured
value 0.1 ± 0.05 [25], the calculated CQQ(2H) val-
ues (circles in Fig. 1) are usually overestimated by
25–30% as compared to the experimental ones for
HY and HZSM-5 forms [2, 25, 26] (dashed lines in
Fig. 1). The reason for the relatively large differ-
ence between experiment and calculation can come
either from overestimated nuclear quadrupole mo-
ments Q, or from a wrong geometry accepted for the
interpretation. Allowing the high computation ac-
curacy of the nuclear quadrupole 2H moment Q, i.e.,
±0.7% [20], one hence can only discuss the problem
from the point of view of geometry.

FIGURE 1. CQQ(2H) (in MHz) calculated with the
ps-21G∗∗ (filled circles) and 6-21G∗∗ (open circles for all
models and triangles for the Si–O1(H)–Al moiety with
elongated O1–H bond within HEDI) basis sets for the five
H-form aluminosilicates with respect to O–2H bond
length (Å). Interval of experimental data [2, 25, 26] is
limited by dashed lines.

The CQQ(2H) values, which decrease with the
O–2H bond length with both ps-21G∗∗ and 6-
21G∗∗ basis sets, are relatively close for all different
2H atoms, which thus indicates that the replace-
ment of the core electrons of the remoted Si and
Al by pseudopotentials has no influence. We also
extrapolated the CQQ(2H) values for longer O–2H
bond lengths (lines in Fig. 1) as compared to that
optimized, with cluster or periodic calculations, in
the O–H case. To verify such extrapolation, we cal-
culated the CQQ(2H) values with 6-21G∗∗ for the
Si–O1(H)–Al moiety of HEDI. This moiety was cho-
sen as it corresponded closely to the cluster geome-
try case: |O–H| = 0.983, |O–Si| = 1.676, |O–Al| =
1.913 Å, and β = 0.4◦. The interval for the O–H
bond length variation was chosen between 0.9933
and 1.0333 Å (triangles in Fig. 1), while all other
structural parameters (the |O–Si| and |O–Al| dis-
tances, as well as the H–O–Si, H–O–Al, and Al–O–Si
angles) were kept fixed. A satisfactory agreement
with the measured CQQ(2H) values, between 208
and 264 kHz [2, 25, 26], was obtained for the short-
est O–2H bond lengths, between 0.9933 and 1.025 Å,
as compared to what could be predicted from the
extrapolated values, between 1.005 and 1.043 Å (6-
21G∗∗ level).

The CQQ(2H) and η(2H) variations with the H de-
flection angle β from the Si–O1(H)–Al plane were
also tested, but they are negligible. So, a longer
O–2H bond length can explain the difference be-
tween the theoretical and experimental CQQ(2H)
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values. This difference could be explained taking
into account that the experimental CQQ(2H) and
O–2H bond values are measured at the averaged
ground state value R0 as compared to the equilib-
rium value Re usually obtained via ab initio com-
putations. This larger value is confirmed by the
experimental value of 1.051 Å for the O–H bond
in zeolite Y obtained from inelastic neutron scat-
tering experiment [27]. Hence, we decided to check
the possible anharmonic increase of the O–H bond
length of a bridged moiety in the v-vibrational state
as [28]:

Rv = Re − (3aBeRe/ωe)
(
v+ 1

2

)
, (3)

where the anharmonicity coefficient a is −2.210/
−2.466, the rotational constant Be is 18.825/10.028,
and the harmonic frequency ωe is 3727/2721.2 cm−1

for the O–H/O–2H bond lengths, respectively, [29].
Using these values, one could evaluate the increase
at the ground vibrational state, 1R0 = R0 − Re,
as around 0.0162/0.0273 Å. The larger anharmonic-
ity correction for the O–2H bond is in agreement
with the known longer O–2H bond lengths [30].
So, if an equilibrium O–2H value Re of 0.97–0.98 Å
is obtained via any optimization scheme, then the
resulting ground-state distance provides, owing to
the O–2H anharmonicity, a decrease of CQQ(2H) to
208–264 kHz, which is in the usual range of the
experimental estimates for the H-forms [2, 25, 26].
The reason for a smaller length R0 obtained via
Eq. (3) as compared to the average experimental
value 1.051 Å [27] could be discussed knowing the
respective experimental error values, but no values
were presented in Ref. [27].

Another important question is the influence be-
tween the local characteristics such as the O–H
frequency [31 – 34] or the O–H bond length [23, 33]
and the geometry of the bridged moiety. So far, to
our knowledge, the influence of the local geome-
try was usually limited to the Si–O–Al angle (ϑ)
omitting the other local characteristics. Particularly,
several authors showed that the O–H frequency
[32, 34] badly correlates with the ϑ angle in a se-
ries of H-forms of SAPO (based on the ALPO-5 and
ALPO-34 sieves [32]) as well as in aluminosilicates
(SSZ-13, SSZ-24 [32], MCM-22 [34]) empirically op-
timized with GULP [24] considering both empirical
and ab initio based force fields. These results were
supposed to be sufficient to conclude to a domina-
tion of the long-range effects on the O–H frequency.
An opposite conclusion about the existence of the
ϑ dependence on the O–H frequency, although not
very precise, was observed in HSAPO-34 using a

plane wave approach [31]. A last example of the
importance of the local characteristics was demon-
strated via a quadratic dependence of the O–H bond
length on the ϑ angle for HEDI optimized with
GULP applying a parameterization based on B3LYP
calculations [23].

The influence of the electron correlation on the
EFG values can be estimated as rather small by
comparison with the corresponding values recently
published for the HEDI structure [35]. From our
calculated CQQ(2H) values (Fig. 1), one estimated,
using expression (1), that the respective EFG value
ranges are 43.4–49.2 Å−2 and 41.9–47.7 Å−2 for the
H-forms studied herein with Si/Al ratio between
1 and 2 at the ps-21G∗∗ and 6-21G∗∗ basis set lev-
els, respectively. This is in good agreement with the
approximate interval 42.5–43.5 Å−2 calculated with
B3LYP for HEDI structures with Si/Al ratio between
1 and 3 [23].

One could thus suggest that a more precise coor-
dinate dependence should be proposed to reveal the
real influence of the local moiety on the O–H charac-
teristics. For a complete conclusion, the influence of
all other local characteristics, like the β angle of the
proton deflection from the Si–O–Al plane, should
also be checked. As soon as the electrostatic field
at the proton position correlates with the O–H fre-
quency [32, 33], the field value should, indeed, also
depend on the local coordinates. We thus verified
this dependence avoiding the problem of the O–H
frequency calculation with the usual wave functions
as applied in CRYSTAL. The field vector was calcu-
lated at the H position while the latter was allowed
to “move” along the angle β with respect to the
Si–O(1)–Al plane within the HEDI framework. The
most favored H position in this grid is 6.0◦ with
the 6-21G∗∗ basis set, which coincides to 6.24◦ fit-
ted with STO-3G while varying the cell parameters
(lower part of Table II). The barrier of the β vibra-
tion (Fig. 2) is lower than 70 K = 2.2×10−4 a.u. for a
motion between 6◦ and−2◦ and lower than 163 K =
5.2× 10−4 a.u. between 6◦ and 20◦, so that the β mo-
tion relative to the plane is not strongly hindered
within a wide temperature interval. The absolute
value of the electrostatic field |F| = 0.00575 a.u. (or
29.57 V/Å) at β = 6◦ varies up to 30% (β = −2◦)
and 31.5% (β = 20◦). For comparison, the difference
between the field values for the H atoms of all the
bridged groups does not overhead ±8% relative to
the average value [32, 34]. One should remark that
the electrostatic field evaluation at the “cross” posi-
tions within the H-form of the MCM-22 zeolite, with
ab initio based force fields [34], is close to our field
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FIGURE 2. Absolute value of the electrostatic field |F|
(×10, a.u., solid line) at the proton position and total
energy U− 4201.35 (×10, a.u., circles) with respect to
the angle β (degrees) of the proton deflection from the
Si–O(1)–Al plane within HEDI.

estimation within HEDI, both being twice as large
as the value obtained with empirical force fields.

Evidently, the optimization of the O–H bond
length at different β angle values seems to decrease
the field value as well as the barrier of the β vi-
bration. But even after optimization (not performed
here), the range of the field variation with β would
remain appreciable with respect to the differences
between its value at the different adsorption centers.

QUADRUPOLE COUPLING CONSTANTS OF THE
ALUMINUM ATOMS

The same question of the choice of correct local
coordinates discussed above for deuterium holds
for aluminum. Both the deformational and stretch-
ing distortions lead to a symmetry lowering of the
AlO4 tetrahedra, which could lead to a variation of
the CQQ values. To our knowledge, only the defor-
mational distortions were used so far to construct
a local shear strain coordinate connecting any arbi-
trary AlO4 distortion with the respective CQQ(27Al)
value [36]. This coordinate is, however, only ap-
propriate for cationic forms as studied in Ref. [36],
wherein no particularly long O–Al bond appeared
owing to the bridged O neighbor.

We performed a two-dimensional fitting with re-
spect to the difference between the absolute values
of the rows of both the deformational and stretching
vibrational coordinates of the F2 type. The valence
and deformational types correspond to the rows of
the irreducible representation of the F2 type within
the Td point-symmetry group, that is, the stretching
(valence) distortions 1R = maxi,j(ai − aj), i, j = 1–3,

FIGURE 3. Approximation
“a1 sin(ϕ − ϕ0)+ a21Rn + a3” (solid line) of the
CQQ(27Al) (in MHz) calculated with 6-21G∗∗ (circles) for
the four H-form aluminosilicates (excluding HCHA) with
respect to the maximum deviation 1R (in Å) of the O–Al
bond length from the average AlO4 value (Å) and to the
maximal difference ϕ (in degrees) of the rows of the
F2-type deformational vibration of the AlO4s. Interval of
experimental data for HZSM-5 and HY zeolites [2, 25, 26]
is limited by dashed lines.

where a1 = 1r1 + 1r2 − 1r3 − 1r4, a2 = −1r1 +
1r2+1r3−1r4, and a3 = 1r1−1r2+1r3−1r4, in
which 1rk = (rk − R) is the displacement length of
the k atom from the average value R = (

∑
rm)/4,

and the angular (deformational) distortions ϕ =
maxi,j(bi − bj), i, j = 1–3, where b1 = 1α12 − 1α34,
b2 = 1α23 − 1α14, and b3 = 1α13 − 1α24, in which
αkl is the Ok–T–Ol angle between the bonds with
k- and l-oxygen neighbors of each T atom (k, l =
1–4) and 1αkl = αkl − 109◦47. The fitting with re-
spect to the1R and ϕ parameters was, however, not
successful; 1R was then replaced by the largest de-
viation from the average AlO4 value of the longest
O–Al bond, so that 1R = maxi(ri − R). Doing so,
with a simple analytical form as “a1 sin(ϕ − ϕ0) +
a21Rn + a3,” where ai, n, and ϕ0 are fitted parame-
ters (note; this nearly arbitrary form was chosen to
become zero for ϕ and 1R approaching zero), led
to a more reasonable agreement (Fig. 3). Most of
the calculated points (circles in Fig. 3) are, indeed,
within the range of the experimental evaluations
from 11 to 18 MHz [2, 25, 26].

Let us add that applying the ps-21G∗∗ basis set
on Al atoms was unsuccessful as it led to strongly
underestimated CQQ(27Al) values. We did not find
a simple ratio between the EFG anisotropy and the
AlO4 distortion and, hence, the results regarding η
are not discussed herein.
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TABLE III
EFG anisotropies η and CQQ(27Al) values of the Al atoms whose calculated values do not coincide with the
interval of experimental quadrupole coupling values with respect to the angular distortion ϕ = maxij(bi − bj),
i, j = 1–3, where bi (in degrees) is a row of the irreducible representation for the deformational vibration of the F2
type within the Td point-symmetry group, and to the bond distortion 1R = maxi(ri − R), i = 1, 4, R being averaged
over ri = |Al–Oi| (all in Å) for the AlO4 tetrahedra.

Nearest |Al–O(H)| 1R R ϕ CQQ(27Al)
H-form O(H) type (Å) (Å) (Å) (deg) η (MHz)

HNAT O4 1.836 0.143 1.692 7.53 0.601 20.2
HNAT O1 1.884 0.157 1.727 21.41 0.248 22.6
HEDI O1 1.913 0.171 1.741 16.85 0.184 23.9

So far, to our knowledge, CQQ(27Al) values were
measured for two Y and ZSM-5 zeolites only. Con-
sidering other zeolites could evidently shift the
bounds of the experimental estimates of CQQ(27Al).
A relation between the AlO4 distortion (as described
by the structural ϕ and 1R parameters) and the
CQQ values can, however, be preliminary discussed.
Three CQQ values are higher than 18 MHz and do
not correspond to the measured values between 11
and 18 MHz [2, 25, 26]. Two of the three 27Al atoms
with the highest CQQ values (22.6 and 23.9 MHz) in
HEDI and HNAT frameworks are connected to the
bridged moieties, which possess structural parame-
ters that are close to the “cluster” model with an
|O–Al| bond length of 1.90 Å (Table III). The smaller
value of 20.2 MHz outside of the experimental lim-
its corresponds to the typical Si–O(H)–Al moiety
obtained with CRYSTAL at the STO-3G basis set
level [12, 15] for an |O–Al| bond between 1.80 and
1.90 Å. So we can suggest that this long |O–Al| bond
is responsible for the CQQ(27Al) deviation out of the
experimental range. Simultaneous verifications of
the CQQ(27Al) values with higher quality basis sets
and further measurements of the CQQ(27Al) range
for other H-forms are thus necessary in order to dis-
criminate between the different Al environments.
One should mention that if we use the higher value
Q = 0.1466 barn [37] recently obtained, CQQ(27Al)
values increase by 4.6% as compared to the value
calculated with Q = 0.1402 barn [18]. It yields to
21.1, 23.6, and 25.0 instead 20.2, 22.6, and 23.9 MHz,
respectively, in Table III.

Considering all possible H locations in the five
frameworks, we obtained a wide variety of mod-
els of the bridged groups [15] as compared to the
results of Teunissen, which optimized the HCHA
framework at the same STO-3G level [12]. Together

with the models with shorter Al–O distances usu-
ally obtained at this basis set level, a close cluster
geometry was also obtained for several H positions
in the HEDI, HCHA, and HNAT zeolites [15]. This
shows the importance of the long-range contribu-
tions for the resulting geometries. In accordance
with the CQQ estimation [38] for the cluster geom-
etry (respective model with |H–O| = 0.971, |Si–O| =
1.680, |Al–O| = 1.943 Å) at the 3-21G∗∗ level, we
should have a correct CQQ value (as compared to ex-
periment) of about 14 MHz or less using Q(27Al) =
0.1402 barn [18], because our H-form presents a
lower |Al–O| distance (last line in Table III, |H–O| =
0.983, |Si–O| = 1.676, |Al–O| = 1.913 Å). But
we obtained an overestimated CQQ(27Al) value of
23.2 MHz with the 6-21G∗∗ basis.

The overestimation of the CQQ(27Al) values cal-
culated for the H-forms obtained via the isolated
cluster approach as compared to the experimental
ones was already discussed in the literature [38]
allowing electronic correlation methods [second-
order Møller–Plesset (MP2) or density functional
theory (DFT)] and higher quality of basis sets. That
is why we propose that more correct CQQ(27Al) esti-
mations owing to the long-range EFG contributions
calculated within the PHF scheme could provide
higher precision. We believe that the critics of the
potential derived charge (PDC) model in [38] is not
justified. The replacement of all electronic contribu-
tions to the EP by corresponding PDCs could be in-
duced only for the remote electronic parts for which
a presentation by a multipole series is appropriate
as developed for example in [9]. Unfortunately, the
limits of our available computational facilities did
not allow us to test such possibilities of the PHF
scheme with a higher quality basis.
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Results of the calculations of the CQQ and ∇Ezz

values with respect to the T–O–T′ angle are recip-
rocally inverted [Eq. (1)], so that analogous trends
can be demonstrated either in terms of zeolite type
(Fig. 4) or in terms of the T–O–T′ moiety (Fig. 5).
Simple linear approximations “∇Ezz = a×ϑ(◦)+ b,”
where a = 7.5 × 10−4, 1.47 × 10−3, and −4.18 ×
10−3 e × a.u.−3 × degree−1 and b = 0.877, 0.4873,
and −0.7703 e × a.u.−3 for the Si–O–Si, Si–O–Al,
and Si–O(H)–Al types of oxygen, respectively, as
given in Figure 5 (by dashed, dotted, and solid lines,
respectively) can be converted to obtain the CQQ val-
ues in Figure 4. However, the error of the respective
fitting of the slope makes the ∇Ezz approximation
to be only qualitative. The CQQ values calculated
herein for the Si–O–Si, Si–O–Al, and Si–O(H)–Al
types of oxygen are partitioned from −5 to −6,
−3.5 to −5, and 7.5 to 9 MHz, respectively. Ab-
solute values of the Si–O–Si moiety are close to the
experimental data obtained for all-siliceous fauja-
site [39], 5.1 to 5.39 MHz, or ferrierite [40], 5.22
to 5.64 MHz, while the experimental data for SiO2

is near 5.8 MHz [41]. Other CQQ data between 2.7
and 5.1 MHz were fitted from double rotation NMR
spectra for a series of silicates [42]. The CQQ val-
ues for the Si–O–Al moiety are relatively larger
as compared to the ones fitted for the NaA and
NaLSX zeolites [43], for which most of the esti-
mates were around 3 MHz. Having no experimental
data on the bridged 17O atom connected to a pro-
ton, we then concluded that the respective CQQ for
the Si–O(H)–Al oxygens should be larger than those
for the Si–O–Al moiety and hence would lead to
a broadening of the respective lines in the NMR
spectra. The EFG anisotropy η did not reveal any
difference between the Si–O–Al and Si–O–Si types
of oxygen. Most of the obtained η values for the
Si–O–Si and Si–O–Al moieties are below 0.4. Only
the O atoms of the Si–O(H)–Al type are character-
ized by higher η values around 0.9.

The variation of CQQ(17O) with the elongation of
the O–H bond for the Si–O(H)–Al moiety, as could
be observed, for example, when the H is coordi-
nated to an adsorbed particle, has to our knowledge
never been discussed in the literature. However,
it has been shown that the CQQ(27Al) values of
a loaded sample decrease by 2–3 orders of magni-
tude as compared to the value for the nonloaded
case [26] owing to the simultaneous increase of
the O–H bond length as well as to the decrease of

FIGURE 4. CQQ(17O) (in MHz) with respect to T–O–T′
angle (in degrees) in the Si–O–Si, Si–O–Al, and
Si–O(H)–Al moieties, calculated with ps-21G∗∗ for the
five H-form aluminosilicates. Intervals of experimental
data [39 – 43] for the Si–O–Si and Si–O–Al moieties are
limited by dashed lines.

the O–Al bond upon H coordination. The H atom
is very close to the oxygen and its influence is
thus important. Hence, the theoretical evaluation of
CQQ(17O) with respect to the O–H bond length be-
comes very useful. We found that both the CQQ(17O)
and η(17O) variations are less than a few percent
under elongation from 0.9833 to 1.0333 Å, which
is usually smaller than the experimental error. This
slight dependence demonstrates the importance of

FIGURE 5. EFG ∇Ezz(17O) (in e× a.u.−3) with respect
to T–O–T′ angle (in degrees) in the Si–O–Si, Si–O–Al,
and Si–O(H)–Al moieties calculated with ps-21G∗∗ for the
five H-form aluminosilicates. Intervals of experimental
data for the Si–O–Si and Si–O–Al moieties, recalculated
from the known CQQ(17O) values [39 – 43], are limited by
dashed lines.
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the contributions of the Si and Al neighbors, which
possess higher atomic charges than the hydrogen,
to the total EFG value at the O position. The small
CQQ(17O) change with the O–H stretching cannot
be measured; however, it should be verified allow-
ing an additional charge transfer of the electronic
density to the H-bonded molecule, which was not
considered in our calculations.

Conclusions

Quadrupole coupling constants CQQ of the crys-
tallographically different 2H, different 27Al, and
different 17O atoms were obtained for a series of
“small” size H-form aluminosilicate models (ABW,
CAN, CHA, EDI, NAT) optimized with periodic
Hartree–Fock calculations at the STO-3G level using
the CRYSTAL code. Single-point calculations were
then carried out at the ps-21G∗(Al, Si)/6-21G∗(O, H)
and 6-21G∗(Al, Si)/6-21G∗(O, H) levels.

Resulting CQQ(27Al) values depend on both
deformational (O–Al–O) and valence (O–Al) dis-
tortions of the AlO4 tetrahedra in the H-forms.
Long-range contributions to the EFG ∇Ezz (27Al) cal-
culated with a periodic Hartree–Fock scheme pro-
vide more precise estimations to the CQQ(27Al) than
a cluster approach at the same basis set level.

The CQQ(17O) values for the Si–O–Si and Si–O–Al
moieties coincide with the respective data measured
for the X and Y cationic forms and silicates. It thus
confirms the correct representation of the deriva-
tives of the electrostatic potential on the 17O nuclei
using the ps-21G∗(Al, Si)/6-21G∗(O, H) basis set.
Correlations of the CQQ(17O) values with the respec-
tive T–O–T′ angle were too weak and hence did not
allow any quantitative reasoning in accordance with
the recent results presented in [40].

For all variety of Si–O(H)–Al moieties (includ-
ing the case corresponding to a cluster geometry),
CQQ(2H) coincided with the experimental data for
the HY and HZSM-5 forms if the anharmonicity ef-
fects of the O–2H bond are taken into account. We
also showed that a precise β angle value of the H
deflection from the Si–O–Al plane should be con-
sidered to connect the absolute value of the electro-
static field/OH frequency with the local geometry
of the bridged group.

The agreement between the CQQ values of all
considered atoms for the small size H-form alumi-
nosilicates (ABW, CAN, CHA, EDI, NAT) with the
values measured for “large” size forms (ZSM-5, Y)
suggests a similar electrostatic “media” in which the

framework atoms are embedded. This confirms the
possibility to describe their properties (like atomic
moments) within a similar approach, i.e., a common
dependence on geometry and low-order multipole
moments for the atoms of small and large size zeo-
lites as proposed in [7].

Cationic forms were shown to be more appropri-
ate initial structures than their siliceous analogs for
optimization of the geometry because they require
a smaller perturbation of the cell parameters. The
cationic forms are thus useful when one does not
require a comparison of the H-form characteristics
with respect to the basic siliceous structures.
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