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HIGH-ORDER ATOMIC MULTIPOLE MOMENTS

Introduction

T he evaluation of the electrostatic interactions
remains one of the most important tasks

within theoretical studies concerned with the inter-
action between biomolecules and solvent particles.
The importance of the electrostatic effects between
polar components of a cluster was confirmed by the
good agreement between the theoretically predicted
and experimentally recorded geometries, for exam-
ple, for hydrogen bonding components [1], as well
as for other types of molecular clusters [2]. Also,
large values of the measured electrostatic field in ze-
olites [3, 4] suggest that the interactions with guest
molecules in their adsorbed state are essentially of
electrostatic character.

The computation of the electrostatic interactions
can a priori be achieved via any distributed multi-
pole analysis (DMA) scheme [5 – 9] wherein atomic
and bond centers can be considered as sites for
the decomposition of the electron density. To our
knowledge, the idea of distributed moments was
first developed on the basis of the partition of the
electron density, evaluated at the iterative extended
Hückel theory level [5] and CNDO level [5, 6], in-
cluding the atomic centers only. Presently, it is, how-
ever, known that an approach taking into account
both the atomic and bond centers, as developed in
Stone’s work [7], is usually preferable as it is more
precise in providing convergence of the electrostatic
interactions in a larger available space around the
molecule under study [10]. Reaching the same pre-
cision for the electrostatic field values with atomic
centers only would indeed necessitate to calculate
high-order moments. For example, it was shown
that the knowledge of the multipole moments (MM)
up to the fourth order is required to obtain field val-
ues with a precision below 1% with the Saunders
et al. scheme using atomic centers [9].

In this sense, it has also already been clearly
shown that, as soon as the MMs depend on the
geometry of the atom studied [7, 9 – 11], the knowl-
edge of the dependences of the MMs with respect
to the atomic internal coordinates is preferred to
any known MM values only. The possibility to de-
rive approximations of the MMs with respect to any
structural parameter is indeed attractive because it
allows the calculation of the respective moments
from the geometrical data of the model only, such
strategy being particularly useful in solid-state cal-
culations. For zeolite crystals, for example, ab initio

methods indeed often fail either owing to the large
number of atoms per elementary unit cell or to the
unordered location of the substituting atoms in the
framework, both preventing the wide application of
the embedded cluster techniques to these materi-
als. Appropriate analyses of the MM behavior with
respect to the geometry could thus help, for exam-
ple, to evaluate the long-range contributions in most
of the zeolite catalysts of industrial interest. To be
complete it should, however, be stressed that the
derivation of such approximations within these ma-
terials requires some care, mainly because the very
wide interval for the interatomic distances and re-
spective conformational angles within most of the
zeolites considered could correspond to different fa-
vored electronic states. Hence, few useful relations
between MMs and structural parameters were pro-
posed so far.

Beginning of the 1980s, a linear correlation was
observed between the quadrupole moment Q0

2(C) at
the carbon atom, calculated with Stone’s scheme [7],
and the occupation of π orbitals and number of
nitrogen atoms in the rings of a series of aza-
benzenes [11]. Later on, it was demonstrated that
the atomic MMs within some flexible molecules
(ethanol, glycine, . . .) vary strongly with the confor-
mational angle by expansion of the MM as a series
of the different angles [12, 13]. In these studies, it
was shown that the MMs change in an appreciable
manner even when the atom is remote from the two
atoms positioned on the rotational axis. Evidently,
such a behavior does not allow to obtain transfer-
able MM values, which would be useful for any
DMA estimations within a relevant class of large
flexible molecules.

The transferability of the lowest MM, i.e., the
Mulliken atomic charges, on the contrary, has been
clearly verified for a series of all-siliceous zeo-
lites, which generally present a narrow interval
for the Si–O bond length and a wide Si–O–Si
angle variation [14 – 16]. Simple one- and two-
dimensional approximate analytical forms were in-
deed proposed for the Si and O atomic charges
with respect to the internal geometry of the frame-
work atoms. The Si and O charge values of the
silicalite/STO-3G and all-siliceous mordenite/6-
21G∗ obtained via the respective analytical depen-
dences [14 – 16] coincide with those computed by
periodic Hartree–Fock (PHF) calculations [17, 18].
Similarly, through other low-order moments, the
O dipole moments were approximated with re-
spect to the bond distances and angles for a series
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of all-siliceous zeolites, aluminosilicates, and alu-
minophosphates [19, 20]. A simple sine function was
found to be appropriate for a qualitative represen-
tation of the dipole dependences for the O atoms
through all the systems at different basis set lev-
els. Together with approximations of the Mulliken
charges of the Si and O atoms already shown
[14 – 16], these dependences of the MMs could thus
provide an easy way to calculate the electrostatic
field within any arbitrary zeolite framework even if
it would be untractable through direct PHF compu-
tations.

In this work, we will analyse the high-order MMs
of the various framework atoms of several three-
dimensional solids such as zeolite models and other
crystalline sieves. In the next section, we discuss
some aspects of the MM computations and present
the models chosen. In the third section, a general ex-
pression for the approximate representations of the
MMs of any arbitrary order is given. It is based on
Stone’s relation [7] between the central moment of
a molecule and the atomic MM of lower or equal
order located on the atoms and on the bonds (al-
though the latter are not considered in the scheme
implemented in CRYSTAL95 [21]). In the fourth
section, we discuss the results of the use of the
approximations with respect to the internal coor-
dinates for the Si and O atoms within all-siliceous
zeolites, for the Al, P, and O within the ALPO sieves,
and for the H, Al, Si, and O atoms within the H-form
aluminosilicates. Deviations between the calculated
and approximated moment values are analyzed in
the last section.

Computational Aspects

The all-siliceous zeolite models considered
herein were already studied earlier with various
different basis set levels, from minimal STO-3G to
6-21G, ps-21G∗, and 6-21G∗ (this last one, however,
just only for the chabazite, CHA, and montesom-
maite, MON, frameworks) [14 – 16]. Herein, we
included computations for the low-pressure form
of cristoballite (CRI), α- and β-quartz, edingtonite
(EDI), dachiardite (DAC), and sodalite (SOD),
studied at the 6-21G∗ level (Table I). This allowed
to analyze the behavior of different order multipole
moments (MMs) of Si and O versus their internal
geometry in the respective frameworks. Four
aluminophosphates (ALPOs), ATN, AST, ATO,
CHA, were also considered at the 6-21G∗ level to
include the MMs of Al and P, and of other O atoms
in a second type of framework (Table II). To test
the influence of the geometry, nonoptimized and
optimized sets of structural models were taken into
account. The total geometry optimizations were
performed for all-siliceous zeolites and ALPOs
(with the exception of the AlPO4-34 or CHA
framework) using molecular mechanics based on
the empirical Burchart–Kramer–van Santen (BKS)
force field [25] as implemented in Cerius 2 [26].
To our knowledge, the only optimization reported
so far is the one of the CHA aluminophosphate
structure, using a plane wave method [24].

Five “small-size” hydrogen form zeolites were
optimized at the STO-3G level [20] with the CRYS-
TAL95 version, in which we adopted the Polak–

TABLE I
Symbol and number of atoms of different Si and O types, of atomic orbitals (AO) per unit cell (UC), and
symmetry group of the all-siliceous zeolites [22].

AO/UC Symmetry
Name Symbola Atoms/UC nSi/nO (6-21G∗) group

α-Quartz α-QUAb 9 1/1 138 P3221
β-Quartz β-QUAb 9 1/1 138 P6222
Cristoballite CRIb 12 1/1 184 P42212
Montesommaite MON 24 1/3 368 I41/amd
Edingtonite EDI 30 3/5 460 P21212
Sodalite SOD 36 2/1 552 P43n
Dachiardite DAC 36 4/9 552 C2/m
Chabazite CHA 36 1/4 552 R3c

a Ref. [23].
b Own notation for convenience.
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TABLE II
Symbol and number of atoms, of different Al, P (nP = nAl), and O types of atomic orbitals (AO) per unit cell (UC),
and symmetry group of the aluminophosphate sieves [22], all of them corresponding to the Al/P = 1.

AO/UC Symmetry
Name Symbola Atoms/UC nAl/nO (6-21G∗) group

MAPO-39 ATN 24 1/4 368 I4
AlPO4-16 AST 30 2/3 460 F23
AlPO4-31 ATO 36 1/4 552 R3
AlPO4-34b CHA 36 1/4 552 R3

a Ref. [23].
b Ref. [24].

Ribiere algorithm [27]; then, single-point calcula-
tions were considered at the ps-21G∗ level. Four
of them were further successfully considered with
the 6-21G∗ one (Table III), with the exception of
the HCHA framework which requires a strong
variation of the Gaussian exponents at the 6-21G∗
level.

All MMs related to the atomic positions up to
fourth order were determined via the distributed
multipole analysis scheme proposed by Saunders
et al. [9] available in the CRYSTAL95 [21] ab ini-
tio Hartree–Fock code for periodic systems. The
Durant–Barthelat pseudopotential ps-21G∗ basis set
was considered with sp/d exponents as recom-
mended in Ref. [21]. The used Gaussian sp/d ex-
ponents for the 6-21G∗ basis are 0.9, 0.15/0.35,
0.15/0.4, and 0.42/0.72 a.u.−2 on the H, Al, Si,
and O atoms within the H forms, 0.17/0.45 and
0.36/0.65 a.u.−2 on the Si and O atoms within the
all-siliceous zeolites, and 0.14/0.35, 0.15/0.5, and

0.45/0.72 a.u.−2 on the Al, P, and O atoms within
the ALPOs.

All computations with the CRYSTAL95 code
were carried out on an IBM 15-node (120-MHz)
Scalable POWERparallel platform (with 1 Gb of
memory/CPU). For all cases, the thresholds for
the calculations were fixed to 10−5 for the overlap
Coulomb, the penetration Coulomb, and overlap ex-
change, to 10−6 and 10−11 for the pseudo-overlap
exchange, and to 10−5 for the pseudopotential se-
ries. A typical total geometry optimization of one
bridged Brönsted center (12 variables) within STO-
3G takes 2–3 days on the above cited CPU. The
single-point computations with the split-valence
basis were executed directly without keeping the
bielectronic integral files. The respective shortest
convergence (7–8 cycles) took around 1.5–2 h in the
case of the Brönsted centers of the HABW zeolite
and around 20 min for any form of cristoballite with
6-21G∗.

TABLE III
Symbol and number of atoms, of different Al, Si, and O types (nH = nAl) of atomic orbitals (AO) per unit cell (UC),
and symmetry group of the H-form aluminosilicates [22].

AO/UC Symmetry
Name Symbola Atoms/UC nAl/nSi/nO (6-21G∗) group

ABW HABW 28 1/1/4 388 Pna21
Cancrinite HCAN 42 1/1/4 582 P63
Chabazite HCHA 39 1/3/8 517b R3
Edingtonite HEDI 34 1/2/5 480 P21212
Natrolite HNAT 34 1/2/5 480 Fdd2

a Ref. [23].
b With ps-21G∗ basis set.
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Approximate Expressions for the
Multipole Moments

A multipole integral expression for any arbi-
trary multipole moment (MM) of L-order (equa-
tion II.4.15 in Ref. [28]) has been determined for
separate λ shells, defined by all quantum numbers
of the atomic orbitals. It includes the summation
over all electronic orbitals χi(r) both centered on the
nuclei within the elementary cell 0 as well as shifted
by the direct translational lattice vector g belonging
to the λ shells of the respective atoms. For example,
for a given atom A with coordinates (XA, YA, ZA),
after summation over all λ shells of the atom, the
m component of the L order atomic MM may be
written as:

Qm
L (A) =

∑
λ

∑
1

∑
2

∑
g

Pg
12

∫
χ0

1 (r)χg
2 (r)

×Nm
L Xm

L (r, A) dr, (1)

where Pg
12 is the density matrix, coefficients Nm

L =
(2 − δm0) × (L − |m|)!/(L + |m|)!, δm0 being the delta
function, and the real solid harmonics Xm

L (r, A) are
expressed as:

Xm
L (r, A) =

∑
(t,u,v)

DL(t, u, v)(x− XA)t(y− YA)u(Z− ZA)v

(2)

the coefficients DL(t, u, v) being tabulated in Appen-
dix A of Ref. [28], and r = (x, y, z) relates to the
electron position.

In previous studies, we derived approximations
for the Mulliken atomic charges, i.e., the Q0

0(A)
moments, for the A = Si and O atoms within
all-siliceous zeolites [14 – 16], and for A = Al, P,
and O within aluminophosphate sieves with ratio
Al/P = 1 [19], based on the assumption that only
the local geometry with respect to the nearest neigh-
bors would be important for the resulting charge
distribution, i.e., expressed through the moment on
the atom studied. This idea was later developed for
the local dipole moment Qm

1 (O) of all types of crys-
tallographically different O atoms within series of
aluminophosphates [19], as well as for the corre-
sponding H forms as considered herein, plus the
CHA framework at the ps-21G∗ level [20]. More
particularly, it was proposed that the local atomic
moment should be proportional to the analogous
“central” MM of the respective zeolite fragment.
Simple geometrical relations between the local and
central dipoles were shown to be precise enough
for leading to satisfactory approximations of the

absolute dipole moment values for the different
groups of O atoms, i.e., Si–O–Si, Si–O–Al, and Si–
O(H)–Al. Following this simple idea of dependence
between the moments on the different centers, we
adopted an expression connecting the central and
local moments similar to equation (11) in Ref. [7]
developed by Stone for any atom or any given site
different from an atom in the molecule:

Qm
L (A) =

N∑
i= 1

L∑
S= 0

S∑
P= −S

[(
L+m
S+ P

)(
L−m
S− P

)]
×QP

S(i)Rm−P
L−S (A, i), (3)

where Rm
L (A, i) corresponds to the respective Legen-

dre polynomial whose argument is the vector be-
tween the considered atom A and site i, Qm

L (i) is the
m component of the L-order MM, the summation i
running over all the N neighbor atoms of A. Even
if only the very first term of the series in Eq. (3) is
considered:

Qm
L (A) =

N∑
i= 1

L∑
S= 0

S∑
P= −S

aLmSPQP
S(i)Rm−P

L−S (A, i)

=
N∑

i= 1

aLm00Q0
0(i)Rm

L (A, i)+ · · · , (4)

with aLmSP being dependent on the Rm
L (A, i) func-

tions used, a useful relation can be obtained for
the behavior of the atomic MM with respect to the
charge and geometry of the respective fragment.
The term in the right-hand side of the series expan-
sion (4) then corresponds to the nuclear contribution
of the central L moment of the fragment includ-
ing N neighbor atoms and centered on atom A.
As an illustration in the case of a molecule, the
relation between the total central moment and its
“nuclear” part is nearly linear, for example, for di-
hydrogen in the gas state [29]. But going now to
three-dimensional (3D) solids, it is evident that the
choice of the closest neighbors within the crystal
will not be limited by the formulas presented above
and that the definition of the number of neighbors N
requires testing.

Unfortunately, the Rm
L (A, i) polynomials pre-

sented in Stone’s work [7] distinguish from those
applied by Saunders et al. to construct the MMs
[9, 28]. In order to apply relation (3) to the MM cal-
culated with CRYSTAL95, one should replace the
normalized polynomials of Stone’s work by the un-
normalized functions Xm

L (r, A) [Eq. (2)] considered
in CRYSTAL. Then relation (3) provides a precise
connection between the central and all local mo-
ments of low order of the fragment. Such adap-

74 VOL. 83, NO. 2



HIGH-ORDER ATOMIC MULTIPOLE MOMENTS

tation is presently under progress in our group.
Meanwhile, here we will consider the results of the
approximations with the first term only, i.e., via
formula (4). Replacing the angular Legendre poly-
nomials Rm

L (A, i) by those expressed through the
nucleus Cartesian coordinates of atom A and its
neighbor atom i (Xi − XA, . . .) as developed in [28],
one gets

Xm
L (A, i) =

∑
(t,u,v)

Dm
L (t, u, v)(Xi − XA)t

× (Yi − YA)u(Zi − ZA)v (5)

in the same form as in expression (2). Then, one can
deduce the coordinates for the charge and geometry
dependences of the MMs from Eq. (4) as:

Qm
L (A) = aLm00Rm

L (A)+ bLm00, (6)

where aLm00 and bLm00 will be fitting parameters, and
the Rm

L (A) functions correspond to the unnormal-
ized functions (5) considered in CRYSTAL:

Rm
L (A) =

N∑
i= 1

Q0
0(i)Xm

L (A, i) (7)

instead of the Rm
L function [used in Eq. (3)] of

Stone’s method, the summation i running over all
the N neighbors of A. If coordinate form (7) from the
expansion series (4) includes only the charge Q0

0(i)
values, then one can show that the parameters aLm00

and bLm00 in Eq. (6) should be independent on the
m value and used simply as aL and bL. This under-
means that the slope of the approximation for the
different m components of L-order MM should be
similar.

However, in order to emphasize the difference
between the central moment described by rela-
tion (3) and a local one, which should be less depen-
dent on the moments of the remoted atoms versus
the closest ones, we decided to consider, instead of
coordinate form (7), a modified form:

Rm
L (A) =

N∑
i= 1

Q0
0(i)Xm

L (A, i) d−K
iA , (8)

which includes a term inversely proportional to the
distance between the i neighbor and A atom, diA =
((Xi −XA)2 + (Yi − YA)2 + (Zi −ZA)2)1/2, K being an
empirical value whose choice should be discussed
(see discussion below). At this stage, let us just say
that all the results we will present further for all the
systems have been obtained with K = 2L+ 1.

Both last functions Rm
L (A) [Eqs. (7) and (8)] should

thus be analyzed in terms of a quantity dependent
on the closest N atoms, not necessarily restricted

to the first neighbor ones. For most of the atoms
within the structural models herein studied, i.e., ze-
olites and other aluminophosphates, an evident first
choice for the neighbor atoms to be included in
Eq. (6) can be proposed easily. For Si, Al, and P in all
the frameworks, it is logical to consider four neigh-
bors; for both H and O in the Si–O(H)–Al moiety,
one considers three neighbors, and for O in the T–
O–T′ moieties, one considers the two first T atoms
as neighbors. For all crystallographically different
atoms A, we thus will compute the charge Q0

0(A)
values with the Mulliken approach in CRYSTAL95
and include them in the calculations of the Qm

L (A)
via expressions (8) and (6) without any approximate
formula of the MM versus the internal geometric pa-
rameters, as given in Ref. [14 – 16, 19, 20].

Approximations of the Multipole
Moments for Aluminosilicate and
Aluminophospate Sieves

H-FORM ALUMINOSILICATES

We first present approximations via Eq. (6) of
the MMs for the H-form zeolites as they have been
partly optimized with the CRYSTAL95 code [20]
and because several tendencies are more clearly ev-
ident within this series of models.

An instructive illustration of the importance of
the neighbor MM values and of the geometry of
the closest atoms only (not including the MMs) is
presented for the dipole components of the crys-
tallographically different Si and Al atoms within
the H-form aluminosilicates. Dipole and quadru-
pole moments of these atoms appear owing to a
distortion of the tetrahedra TO4; they are absent for
a straight Td symmetry. Our first attempt was to
approximate the dipole moments with function (6)
[Figs. 1(a) and 1(c)] replacing the individual differ-
ent Mulliken charge values computed by CRYSTAL
for the neighbor O atoms within the TO4 by av-
eraged equal charges. In Figures 1(a) and 1(c), no
correlation can be observed between the MM Qm

L (T)
and the charge and geometry-dependent coordi-
nate Rm

L (T). But when we include the charge differ-
ences into expression (8), there is a clear correlation
between Qm

L (T) and Rm
L (T) [Figs. 1(b) and 1(d)],

which proves that this inclusion is extremely impor-
tant for the approximation of the dipole moment for
both the T = Si and Al atoms. Interestingly, one also
notes that the highest the MM, the lowest the in-
fluence of the approximate coordinate function (8)
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FIGURE 1. Dependence of the dipole Qm
1 (T) components versus the Rm

1 (T) coordinate [Eq. (8) with K = 3] for the
(a, b) T = Al and (c, d) T = Si atoms, considering (a, c) equal and (b, d) different charges on the first four neighbor
O atoms of all types of Al and Si atoms in the H-form aluminosilicates calculated with the 6-21G∗ basis set: m = 0
(circles), |m| = 1 (squares), positive m values (open signs), negative m values (filled signs). Approximation [Eq. (6)]
is depicted by solid line.

of the lower moments on the resulting fit of the
higher moments, as shown in Figure 2. Hence, the
influence on the T octupole moment approximation
with equal or different charges in expression (8) be-
comes already very minor and is thus not shown
herein. The better correlation (6) for the MMs of Al
as compared to Si could be related with the differ-
ence of second-order neighbors for Si, which can be
given in usual notation nSi(4− n)Al (n = 0, 1, . . . , 4).
Actually, the limited number of zeolite models con-
sidered here does not allow to completely verify
the validity of correlation (6) while expanding the
number of neighbors up to 8 for the T atoms in
Eq. (8).

The basis set dependence remains a problem in
any DMA scheme. The comparison between the
Qm

L (T) components, T = Al, Si, L = 2, 3, obtained
with the ps-21G∗ and 6-21G∗ basis sets in Figure 2,
illustrates the usual smaller slope of function (6)
with ps-21G∗. Also, as seen from Figure 2(c) for the
Qm

3 (Si) with both basis sets, a quadratic function of
Qm

3 (Si) versus Rm
3 (Si) would be more appropriate

than just the linear form of Eq. (6). This deserves

a further discussion (see discussion below). The re-
spective decrease of the Mulliken charges calculated
using CRYSTAL varying the basis set from ps-21G∗
to 6-21G∗ is more important for the T atoms (whose
core electrons are described by pseudopotentials
with ps-21G∗), i.e., almost a factor of two, as com-
pared to the H atoms, which almost do not vary.
One may hope, however, that the final choice of a
correct basis set level could be reached when a com-
plete set of theoretical values for a chosen simple
structural model, for example, relevant parameters
out of the infrared (IR) vibrational spectra of several
adsorbed species, would meet agreement with the
experimental data.

Other higher moments of the O atoms and
dipoles of the H atoms for which a correlation was
rather satisfactory are shown in Figures 3(a)–3(c)
and 3(d), respectively. As the data for the crys-
tallographically different O atoms are too numer-
ous and are presented for the three different types
of T–O–T′ moieties, we have separated the com-
ponents QL

L of L = 1, 3, and 4, for these three
moieties. One can see that the “splitting” between
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FIGURE 2. Dependence of the (a, b) quadrupole Qm
2 (T) and (c, d) octupole Qm

3 (T) components versus the Rm
L (T)

coordinate [Eq. (8)] for the (a, c) T = Si and (b, d) T = Al atoms, in the H-form aluminosilicates: m = 0 (circles), |m| = 1
(squares), |m| = 2 (triangles up), |m| = 3 (diamonds), positive m values (open signs), negative m values (filled signs).
6-21G∗ basis (black signs); ps-21G∗ basis (gray signs). Respective approximations [Eq. (6)] are depicted for ps-21G∗
basis (dotted line) and 6-21G∗ basis (solid line).

the three groups demonstrates clear differences be-
tween the groups. If most components QL

L(O), L =
1, 3, and 4, behave nearly linearly [Eq. (6)] for
all three Si–O(H)–Al, Si–O–Al, and Si–O–Si types,
the dipole component Q−1

1 (O) for Si–O(H)–Al does
not correlate with R−1

1 (O). On the contrary, the
two last moieties, Si–O–Al and Si–O–Si, reveal very
little variation between the Q−1

1 (O) dependences
with R−1

1 (O). Despite the different geometries of the
bridged Brönsted centers obtained by optimization
with STO-3G [20], the respective H-dipole compo-
nents Qm

1 (H) for all crystallographically different
H atoms present very close slope values aLm00 in
Eq. (6). This case [Fig. 3(d)] demonstrates the largest
differences between the approximations (6) for dif-
ferent m components of the same L-order moment
throughout all MMs considered in this work. In
all other cases, approximations (6) nearly coincide,
which is in accordance with our conclusion about
the slope values aLm00 for different m components
as drawn in the discussion on approximate expres-
sions above. Although not presented here for all

different H atoms, we should also mention a sat-
isfactory correlation for the MMs of L = 2, 3, and
4th order. The lower m = 1 components are usually
better approximated than the upper ones for higher
L > 1.

In the case of the hydrogen atoms, we also tested
the expansion of the N neighbors in expression (8)
from 1(O) atom to 3(O, Si, Al) atoms; no improve-
ment in the precision of the aLm00 and bLm00 parame-
ters of function (6) was obtained. The insensitivity
here observed for the MMs of the bridged hydro-
gens can be explained by a minor charge transfer
between Si or Al and H as a result of a long T–H
distance, T = Al, Si, which is in agreement with
that determined experimentally from nuclear mag-
netic resonance (NMR) measurements [30]. How-
ever, such an influence of the number of neighbors
should also be taken into account for the other
atoms, in particular for the Si atoms presenting
different second-order neighbors of the nSi(4-n)Al
type.
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FIGURE 3. Dependence of the (a–c) multipole moment Q−L
L (O) and (d) dipole Qm

1 (H) components versus the Rm
L (X)

coordinate [Eq. (8)] in the H-form aluminosilicates calculated with the 6-21G∗ basis set. Notations for (a–c) cases:
Si–O(H)–Al (filled circles), Si–O–Al (open circles), Si–O–Si (triangles up); approximations [Eq. (6)] are depicted for the
Si–O(H)–Al (dotted line), Si–O–Al (solid line), Si–O–Si (dashed line). Notations for (d) case: m = 0 (circles), |m| = 1
(squares), positive m values (open signs), negative m values (filled signs); approximations [Eq. (6)] are depicted for
m = 0 (solid line), m = 1 (dotted line), m = −1 (dashed line).

ALL-SILICEOUS ZEOLITES

All-siliceous zeolites are less convenient systems
for using approximation (6). A fairly good agree-
ment was obtained only for two lowest allowed
MMs, i.e., dipole moment of the O atom [Figs. 4(a)–
4(b)] and for the octupole moment of Si [Fig. 4(d)],
while just a qualitative correlation was observed for
the hexadecapole moment of O [Fig. 4(c)]. Com-
parison of the dipole components of the oxygens
calculated at the STO-3G or 6-21G∗ levels illustrates
the variation of the aLm00 value with the shift of ba-
sis set [Fig. 4(a)]. Further improvements of the basis
set level should thus be checked on the basis of the
closeness between other calculated values and ex-
perimental data. In this sense in another work [31],
we have shown a good agreement between the ex-
perimental (for “large”-size zeolites) and calculated
(for “small”-size zeolites) quadrupole coupling con-
stants Cqcc of the 17O, 2H, and 27Al atoms, which
confirms the correct values of the gradient field on

these atoms. Further similar steps should be consid-
ered to reach a better coincidence with the measured
electrostatic field too [3, 4].

One of the reasons for the deviations between
the calculated MM values and approximation (6)
could come from the use of nonoptimized struc-
tures. For example, the points near R−3

4 (O) ≈ 0 a.u.
in Figure 4(c) [filled black diamond, above linear de-
pendence (6) for R−3

4 (O) for the MON structure, and
filled black triangle down, below dependence (6) for
R−4

4 (O) for DAC], corresponding to an Si–O–Si an-
gle near 180◦, increase the average deviation. The
existence of zeolite structures with Si–O–Si angles
near 180◦ was clearly questioned [32]. Very large
changes within the framework geometry could lead
to a respective shift in the electron density distrib-
ution. And evidently, all possible density variations
cannot reasonably be presented with a single cor-
relation function (6). We could thus think that such
function would only be precise in a relatively nar-
row range of bond distances and angles. The ques-
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FIGURE 4. Dependence of the multipole moments Qm
L (X) components versus the Rm

L (X) coordinate [Eq. (8)] for the
(a–c) X = O and (d) X = Si atoms, in the all-siliceous zeolites calculated with the (a) STO-3G and (b–d) 6-21G∗ basis
sets: m = 0 (circles), |m| = 1 (squares), |m| = 2 (triangles up), |m| = 3 (diamonds), |m| = 4 (triangles down), positive
m values (open signs), negative m values (filled signs). Nonoptimized models (black signs); BKS optimized models
(gray signs). Approximation [Eq. (6)] is depicted by solid line.

tion then is: Could it be easily recommended for the
systems under study? To our opinion, a pertinent
choice of the type of optimization procedure could
therefore also present a problem to tackle within the
further studies.

The good coincidence already shown between
the geometries of some crystalline solids calculated
by ab initio [33] and optimized using the GULP ap-
proach [34] suggests to try in a first step the purely
empirical schemes. That is why we considered opti-
mizations of the all-siliceous frameworks with the
empirical BKS force field [25] as implemented in
Cerius 2 [26]. The optimized values with the BKS
force field, i.e., 163.1◦, 153.5◦, 147.1◦, and 158.7◦
for the Si–O–Si angle within the SOD, CHA, α-
QUA, and β-QUA, respectively, correlate well with
the ab initio values obtained with CRYSTAL at the
6-21G level, i.e., 159.2◦, 151.9◦, 144.7◦, and 157◦, re-
spectively [33]. Moreover, a predictable conclusion
is that the Si–O–Si angle near 180◦ observed within
the DAC or MON frameworks cannot be simply al-
tered just by optimization with the BKS force field.

The optimization “tries” to equalize all the Si–O dis-
tances to an average one. The Si–O–Si angles are
usually larger and the average Si–O bond distances
are smaller for all structures optimized with the
BKS force field than the ones obtained by ab initio
methods at different levels [33] (the same tendency
holds for the results obtained at the 6-31G∗ basis
set level). It allows to hope that better force fields,
which would consider Si–O–Si angles near 180◦ as
less stable ones, would be developed in the future.

Question of the MMs, the important result is that
the optimization of the structure has almost no in-
fluence. The behavior of the MMs for the optimized
geometry [gray signs in Figs. 4(b)–4(d)] is similar to
the one for the nonoptimized initial models [black
signs in Figs. 4(b)–4(d)]. This agrees well with the
coincidence already noted between the charge [14]
and dipole [19] values computed either for the opti-
mized models, or for the ones on the basis of X-ray
data which were given in [22]. And even more im-
portant is that all the structural changes due to
optimization did not lead to a better agreement us-
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FIGURE 5. Dependence of the (a) dipole Qm
1 (O), (b) quadrupole Qm

2 (O), and octupole Qm
3 (T) components versus the

Rm
L (T) coordinate [Eq. (8)] for the (c) T = Al, and (d) T = P atoms, in the aluminophosphate sieves calculated with

6-21G∗ basis set: m = 0 (circles), |m| = 1 (squares), |m| = 2 (triangles up), |m| = 3 (diamonds), positive m values (open
signs), negative m values (filled signs). Nonoptimized models (black signs); the BKS optimized models (gray signs).
Approximation [Eq. (6)] is depicted by solid line.

ing approximation (6) neither for the dipole of the
Si atoms, nor for their quadrupole moments. Af-
ter the BKS optimization, the number of the points
that increase the average deviation from approxima-
tion (6) becomes larger for the Qm

1 (O) values [gray
signs in Fig. 4(b)] and lower for the Qm

1 (Si) values
(not shown here). That is why one supposes that the
role of an efficient geometry optimizations is not yet
clear, but it rather could improve the resulting fit-
ting of the MMs via Eq. (6).

ALUMINOPHOSPHATE SIEVES

In general, the approximation of the MMs of the
O atom in the aluminophosphates (ALPOs) is better
than the one for O within the all-siliceous mod-
els. The components of both the dipole [Fig. 5(a)]
and quadrupole [Fig. 5(b)] moments of O can be
satisfactorily presented by the respective approx-
imations of linear type (6). The correlation coef-
ficients for the lowest allowed octupole moment
of the tetrahedral atoms Al and P, using approx-

imation (6), are 0.984 and 0.990, respectively. The
question of the choice of an appropriate optimiza-
tion procedure discussed above for the all-siliceous
zeolites, however, remains relevant for the ALPOs.
The same type of optimization of the AST, ATN,
and ATO aluminophosphate sieves with the BKS
force field does not show large improvements of
the MMs for the Al, P, and O atoms for the opti-
mized models (gray symbols in Fig. 5) as compared
to those for the nonoptimized ones (black symbols
in Fig. 5).

Discussion

Before discussing in more detail the reasons for
some deflections from the suggested approxima-
tion (6), let us return first to the choice of the
power K in the charge and geometry-dependent co-
ordinate function (8). Surprisingly, this simple idea
to introduce a term inversely proportional on the
distance diA seems to be very useful to provide, for
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FIGURE 6. Dependence of the dipole Qm
1 (O) components versus the Rm

1 (O) coordinate [Eq. (8)] with (a) K = 0,
(b) K = 1, (c) K = 3, and (d) K = 4 in all-siliceous zeolites calculated with the 6-21G∗ basis set: m = 0 (circles), |m| = 1
(squares), positive m values (open signs), negative m values (filled signs). Approximations [Eq. (6)] are depicted by
solid line.

most cases, a smaller average deviation between the
MM approximated via Eq. (6) and calculated di-
rectly by the CRYSTAL. Different behaviors with
different K power values in coordinate form (8) can
be illustrated by passing from K = 0 in Eq. (8) for
the Qm

1 (Al) and Qm
1 (Si) components in the H-form

aluminosilicates, where no correlation is observed,
to K = 3 [Figs. 1(b) and 1(d), where L = 1] which
shows some correlation.

The problem of the choice of a precise K value
is not a simple task because it requires the best
possible set of MM values for testing Eq. (8). It is
thus complicated by the presence of the “wrong”
points that are present in the chosen data, as for
the Qm

1 (O) within all-siliceous zeolites (Fig. 6), and
which increase the average deviation. Having no
strict criterion for disregarding the unappropriate
points, owing, for example, to the strongly distorted
geometry, we estimated the K power value empiri-
cally. Looking to Figure 6, one notes that K = 2L+ 1
generally provides a better precision in approxima-
tion (6) as compared to the other analyzed values up
to K = 3L+1. This arbitrary (empirical) introduction

of K in Eq. (8) can, however, also lead to distorted
contributions to the central moment, obtained using
a relation analogous to Eq. (4) with polynomials (5),
from the local MMs of the neighbor atoms located
within the different “shells” (first, second, . . .). That
is why we suggest that a “final” choice of the K
value could be done analyzing the obtained MMs
in relation with the analyses of the contributions of
the second-order neighbors, i.e., N = 8 for the O
atoms within the T–O–T′ moieties and all Al, Si, and
P tetrahedral atoms, and N = 9 for the O atoms
within the Al–O(H)–Si moieties. With the exception
of a larger number of neighbors for H, we did not
consider the contributions from the different shells
here and thus have used K = 2L + 1 as estimated
above.

The linear approximation (6) of the high-order
multipole moments (MMs) logically extends the
earlier findings deduced for the Mulliken charges
[14 – 16, 19, 20]. The charges cannot evidently be
described in terms of the charge and geometry-
dependent coordinate (7) or (8). The right-hand side
in Eq. (7) then becomes simply the total charge of
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all the N neighbor atoms for the Q0
0(A) moment.

Despite the fact that a dependence clearly exists be-
tween the atomic charge of a central atom and those
of the neighbor ones, we prefer to consider as a first
step an approximate function based only on the geo-
metrical coordinates in order to have the possibility
to construct a consequent scheme for all MMs, i.e.,
L = 0 → L = 1 → · · · . Hence, all the dependences
derived for the Si and O charges [14 – 16, 19, 20] are
still important for any further development. So far,
all moments cannot be obtained with a satisfactory
precision but future studies with higher terms in
expansion series (4) should complete the required
MM approximations. We emphasize, however, in
accordance with our proposition when discussing
approximate expressions above, that most of the
cases of different m components of L-order MM can
be approximated with Eq. (6) with nearly the same
slope value aL as can be seen from Figures 1–5. The
validity of dependence (6) for all systems consid-
ered is also confirmed by the small free term value
bL approaching zero, i.e., being usually of the same
order value as the error of the bL estimation.

The precision of the expansion series (4) is closely
connected with the role of the atomic centers to
effectively “represent” the total electronic density.
On one hand, application of more sophisticated
basis sets of higher level should lead to the ap-
pearence of important areas of enhanced electron
density, which could need the necessary introduc-
tion of bond centers (or any additional points) for
a correct representation of the density. Hence, the
MMs calculated with a higher basis set quality could
deviate from our approximation (6) limited by the
atomic positions only. On the other hand, we should
consider the basis set of the highest level for the
most precise representation of the electron density.
We would like to show herein that a compromise
between these two tendencies can be reached for
the materials studied. As we have shown above, the
most important MM, i.e., the dipoles on O atoms
and octupoles on the T atoms, can be well pre-
sented with the linear form at the 6-21G∗ level.
This basis set level should also be sufficient for the
computation of the electrostatic field gradients on
framework 17O, 2H, 27Al atoms [31], as it has been
shown that the close 6-31G∗ basis set provides cor-
rect values of NMR shielding constants [35]. Two
evident problems, however, appeared herein with
the a priori most suitable minimal STO-3G basis
set [its suitability is suggested, without showing it
here, for example, by the nice linear behavior (6)
of the O quadrupole Qm

2 (O) and Si hexadecapole

Qm
4 (Si) components]. The dipole and quadrupole

moments for the T atoms, T = Al and Si, within
both the ALPOs and all-siliceous structures (includ-
ing the BKS-optimized models) cannot be approx-
imated with Eq. (6); only a satisfactory correlation
was found for the Qm

L (T), T = Si and Al, L = 1–3,
within the H forms. One could suggest that the
sophisticated behavior of the dipole and quadru-
pole moment components requires a more delicate
geometry optimization than the one we have used
so far.

Another interesting relevant aspect is the “intrin-
sic” cumulativity of the Saunders et al. scheme [9].
This scheme, as also Stone’s scheme [7], does not
include any relation between the atomic MM of dif-
ferent orders on the same center, in the manner
formulated by Sokalski et al. within the cumulative
atomic multipole moments (CAMM) method [8].
On the contrary, dependence (6) between the MMs
of different orders related to the chemically bonded
atoms in zeolites and other sieves could be consid-
ered as analogous to the “cumulativity” concept.
Such property means that with the hierarchical con-
struction of the lower order moments as we suggest,
we could succeed to approximate the higher order
moments on the neighbor atoms.

Approximation (6) demonstrates the capabilities
of a scheme based on the atomic centers only. How-
ever, it has been shown that a decomposition includ-
ing the positions of bond centers provides a more
powerful convergence that can be crucial for an
isolated molecule like N2 [10]. The bond positions
depend on the wave functions applied (if they are
not chosen arbitrarily), while the atomic positions
can be determined experimentally and hence serve
easily as decomposition sites. This last convenience
might be sufficient to prefer the atomic positions
only for the simulation of the electric field provided
that transferable functions for the MMs versus the
atomic geometry are estimated from another source,
using, for example, expression (6) presented herein.

Dependences (6) and (8) could clearly be useful
in further modeling of solid structures for which
most known approaches neglect the charge vari-
ation with geometry. Scheme (6) derived herein
allows also to consider the respective variation of
the higher moments. It has been shown that their
contributions to the resulting electrostatic poten-
tial (EP), in the important zeolite spaces available
for small adsorbed molecules, decrease the latter by
a factor of two as compared to the values produced
by the atomic charges only, both for aluminosili-
cates [20] and aluminophosphates [19]. It should
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FIGURE 7. (a) Electrostatic potential values EP (a.u.) with respect to the Al–O(1)–P plane of the ATN framework
calculated with the 6-21G∗ basis sets; (b–d) EP differences presented as (1− EP/EP(3))× 100(%) obtained using (b, c)
Mulliken charges on all atoms and high-order dipole and quadrupole moments on O and octupoles on Al and P and
(d) Mulliken charges only relative to the potential representation EP(3) allowing all the moments up to third order on all
atoms. EP differences include values of high-order MMs from (b) CRYSTAL calculation and (c) approximation via Eq. (6).

thus essentially improve the empirical simulation of
adsorbed species. Therefore, we have thus verified
the precision of approximation (6) for constructing
an EP map. For this, we computed the EP within

the section passing through the three Al, P, and
O(1) atoms of the MAPO-39 sieve with the ATN
framework [Fig. 7(a)]. Previously, it was shown that
using all MMs up to the octupoles on all atoms
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provided a very reliable EP map [19]. Here, the EP
was built considering MM values for which we sug-
gested the use of approximations, namely dipoles
and quadrupoles on O and octupole moments on
Al and P (Fig. 5). In Figures 7(b) and 7(c), we
present difference (1−EP/EP(3))×100%maps using
Mulliken charges taken from the CRYSTAL calcula-
tion as well as dipoles and quadrupoles on O and
octupole moments on Al and P. The difference be-
tween both figures is that in Figure 7(b) high-order
moments were calculated directly with CRYSTAL,
while in Figure 7(c) they were obtained from the re-
spective approximation (6). In both cases, the dipole
and quadrupole moments on Al and P were ne-
glected. It is very instructive that disregarding these
lower order MMs on Al and P allows nevertheless
a correct presentation of the EP [Fig. 7(b)] in the
space available for small adsorbed molecules (upper
right corner). Very large differences (1 − EP/EP(3))
are usually observed along the line EP(3) = 0 [the
line closest to zero corresponds to the EP of 0.03 a.u.
value in Fig. 7(a)], but such a behavior is only a
minor disadvantage of the EP differences. The dif-
ferences illustrate more clearly the EP variation with
different methods. Both maps provide better agree-
ment with more precise EP calculation (when MM
up to third order over all atoms are included) as
compared to the Mulliken charges only [Fig. 7(d)].

Introducing the simple analytical dependences
already obtained [14 – 16, 19, 20] for the charges ver-
sus the internal geometry in formula (6) or in more
advanced relations based on expression (3) (equa-
tion (11) in Ref. [7]), one could develop a consequent
approximation of all required MMs to reach a high
precise electrostatic field representation. These cal-
culations of the MMs and, hence, of the electrostatic
field could be included in the more and more com-
mon embedded techniques wherein the electronic
charge distribution of the most important atoms
is usually calculated precisely via ab initio cluster
calculation (corresponding to a “bielectronic” zone
of the Saunders scheme [9]) and the long-range
interactions (“monoelectronic” zone) would be ap-
proximated by the MM set. Evidently, a different
partition between these zones as accepted in Ref. [9]
and in the embedded approaches should be dis-
cussed more deeply.

Conclusions

Atomic multipole moments (MMs) are calculated
for three types of three-dimensional model sys-

tems with the periodic Hartree–Fock CRYSTAL95
code using the 6-21G∗ basis sets, i.e., “small-size”
all-siliceous zeolites, aluminophosphates, and an
equivalent series of hydrogen forms of aluminosil-
icates. Approximated functions for the MMs were
first proposed in terms of a simplified expression
[Eq. (8)] being a consequence of a general ratio be-
tween the central and local moments related to the
different neighbor sites as developed by Stone [7]
for an isolated molecule. Reasonable correlations
were found for all the components of the dipole
and quadrupole moments for the O atoms (not
for the O quadrupole within the SiO2 systems)
and for the octupole moments of H, Al, P, and
Si atoms for all studied systems. It was shown
that the inclusion of the differences between the
neighbor O charges is important for constructing
the approximate charge and geometry-dependent
coordinate (8) for the high-order moments of the
T = Si and Al atoms in the same series of H-form
aluminosilicates. This influence, however, decreases
with the order of the multipole moment. The larger
number of neighbor atoms, i.e., O, Si, and Al, con-
sidered in the case of the H atoms does not lead
to a better precision as compared to the approxi-
mation of the MMs of the H atoms regarding only
one neighbor O. This insensitivity to the neighbor’s
“expansion” within the derived approximation for
H can be considered as a confirmation of the local
character of the charge distribution on the bridged
atoms. The possibility to improve the quality of the
approximation of the electrostatic potential is illus-
trated for the aluminophosphate ATN framework.

The proposed scheme allows to construct an hi-
erarchical or cumulative (in terms of Ref. [8]) coor-
dinate sequence based on the expansion series (4)
including known geometry and approximations of
the lower order MMs of the neighbor atoms to con-
sequently describe the higher MMs.
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